Following Emily Yedinak down a rabbit hole **Douglas Wicks** #### Question: Can we stimulate and not wait for Mother Nature? #### The reality of looking down a hole into White Space Numbers get very large and loose "Approximate" and "About" - are precise terms Google doesn't know where you're going ## Iron(II) Silicate – A major source of Mother Nature's H₂ $$3\text{Fe}_2\text{SiO}_4 + 2\text{H}_2\text{O} \leftrightarrow 3\text{SiO}_2 + 2\text{Fe}_3\text{O}_4 + 2\text{H}_{2(aq)};$$ fayalite + water ↔ quartz + magnetite + hydrogen. Roughly 6.6 kg H₂/ton of iron silicate equiv #### And where do we find iron(II) silicates? Olivine – Rarely Pure, and Never Simple Fe reported as oxide but really silicates ~ 10% iron silicates (fayalites) ## **Approximate**Average Composition | Components | Olivine | |--|---------------| | SiO ₂
Al ₂ O ₃ | 46.43
2.55 | | Fe_2O_3 | 10.88 | | TiO ₂ | 0.11 | | CaO | 2.16 | | MgO | 35.57 | | K_2O | 0.39 | | Na_2O | 0.17 | | MnO | 0.17 | | Cr_2O_3 | 0.45 | | P_2O_5 | 0.00 | | ZrO_2 | 0.02 | | SO_3 | 0.00 | | BaO | 0.00 | | ZnO | 0.08 | | NiO | 0.89 | | Co_3O_4 | 0.08 | | CuO | 0.06 | | Total | 100.00 | #### Is there enough of this to make it matter? #### Let's pull out an envelope - Weight of continental crust - -10^{19} ton - ▶ 40% of which is olivinic - $-4 \times 10^{18} \text{ ton}$ - ► 10% of that is iron silicate - -4.0×10^{17} ton - ► 0.0066 ton H₂/ton iron silicate - 2.6 x 10¹⁵ tons of potential H₂ Enough for millions of years of maximum H₂ demand #### What are we waiting for? Let's go get it! It has to be done in situ Its thought to be a slow reaction There are lots of things underground that like H₂ #### Where Geologic Hydrogen Produced? **Quaise Energy** #### Reactions occur deep - Engineering georeactors kilometers underground? - Purifying and claiming H₂ as it's formed? #### Geologic Oxidation Happens under Extreme Conditions Figure 11. The hydrogen concentration as the time during the oxidation process to 1000 °C - High temp and pressure - Can one catalyze it? How fast is fast enough? #### What Happens to H₂ Underground? Microbes use H₂ H₂ reduces oxides/sulfides H₂ reacts to form methane ## So - What can you bring to the tea party? Finding and reaching deep earth deposits Catalyzing this mineral reaction Eliminating parasitic H₂ reactions #### **Thank You** # Let's Reach for the end of the Hydrogen Rainbow Doug.Wicks@hq.doe.gov